ABSTRACT

Background: The contribution of indoor fungal exposure to childhood asthma is not completely clear.

Objective: To investigate airborne fungal flora within the homes of asthmatic and control children, and to assess the influence of housing characteristics regarding indoor fungi.

Methods: Forty-seven atopic asthmatic and 23 nonatopic control children were studied. Allergen sensitivity was determined by skin prick tests. A thorough assessment, using a questionnaire and inspection surveys, was carried out. Home visits were made between October 2000 and February 2001. Samples of airborne fungal spores were collected from four rooms by the “open Petri dish” method. Indoor temperature and humidity were measured.

Results: The total indoor fungal colony counts from the living rooms and bedrooms were significantly higher in the asthma group than in controls (p = .012 and p = .003, respectively). The most commonly isolated genus was Cladosporium. Twelve of the asthmatic patients (25.53 %) were found to be sensitive to fungal allergens. The factors found to be associated with indoor fungal growth in logistic regression were visible fungal patches in the bathrooms \[\text{odds ratio (OR) } = 5.75; 95 \% \text{ CI 1.19 to 27.70}\], and the age of the house [\text{OR} = 4.24; 95 \% \text{ CI 1.34 to 13.45}]. Total fungal colony numbers did not correlate with indoor temperature or humidity.

Conclusion: Fungal colony numbers were higher in the homes of asthmatic children than in those of controls. Therefore, indoor fungal exposure may contribute to childhood asthma. Bathrooms were the main source of fungal propagules. Old houses were more prone to fungal growth.

Indoor airborne fungal spores and home characteristics in asthmatic children from Edirne region of Turkey

M. Yazicioglu\ast, A. Asan\ast, U. Ones\ast, U. Vatansever\ast, B. Sen\ast, M. Ture\ast, M. Bostancioglu\ast
and O. Palah

\ast Associate Professor of Pediatrics. Department of Pediatrics. Trakya University Faculty of Medicine. Edirne. Turkey. \ast Professor in Biology. Department of Biology. Trakya University Faculty of Arts and Sciences. Edirne. Turkey. \ast Professor of Pediatrics. Allergy Clinic of the Department of Pediatrics. Istanbul University Faculty of Medicine. Istanbul. Turkey. \ast Assistant Professor of Pediatrics. Department of Pediatrics. Trakya University Faculty of Medicine. Edirne. Turkey. \ast Research Assistant in Biology. Department of Biology. Trakya University Faculty of Arts and Sciences. Edirne. Turkey. \ast Assistant Professor in Biostatistics. Department of Biostatistics. Trakya University. Edirne. Turkey. \ast Research Assistant in Pediatrics. Department of Pediatrics. Trakya University Faculty of Medicine. Edirne. Turkey. \ast Professor of Pediatrics. Department of Pediatrics. Trakya University Faculty of Medicine. Edirne. Turkey.

The study was carried out at Department of Pediatrics, Trakya University Faculty of Medicine. Edirne. Turkey. This study was supported by the Research Council of Trakya University (TUBAP-395) (Edirne, Turkey).

Correspondence:
Dr. M. Yazicioglu
Sukrupasa mah. Site kent, B Blok D: 13
22030 Edirne. Turkey
Tel.: +90.284.2358312 - Fax: +90.284.2358312
E-mail: yazicioglu@superonline.com
RESUMEN

Historial: La contribución al asma infantil a causa de la exposición a hongos de interior no está total-
mente clara.

Objetivo: Intentamos investigar la flora de hongos que se encuentra en el aire dentro de los hogares de
los niños asmáticos y los niños controlados, así como determinar la influencia de las características de la
casa respecto a los hongos de interior.

Métodos: Cuarenta y siete niños asmáticos y veinte-
trés niños controlados no alérgicos. La reacción alér-
gica se determinó mediante pruebas de alergia. Se lle-
vó a cabo una evaluación exhaustiva utilizando un
cuestionario y encuestas de inspección. Las visitas do-
micilarias fueron realizadas entre octubre de 2000 y
febrero de 2001. Las muestras de las esporas de hon-
gos aerotransportadas fueron recogidas en cuatro ha-
taciones por el método de la “placa de Petri abierta”.
Se midió la temperatura y la humedad interior.

Resultados: El número total de hongos de interior
en las salas de estar y en los dormitorios era nota-
blemente más elevado en el grupo de asmáticos que
en el otro grupo (p = .012 y p = .003, respectivamen-
te). El género aislado más común fue el Cladospo-
rion. Doce de los pacientes asmáticos (25,53 %) re-
sultaron ser sensibles a los hongos. La regresión
logística puso en evidencia que las manchas de hon-
gos visibles en los cuartos de baño [cociente de las
probabilidades (O.I) = 5,75; 95 % del ci 1,19 a 27,70)],
y la antigüedad de la casa [O.R = 4,24; 95 % del ci
1,34 a 13,45] estaban correlacionados con el creci-
miento de los hongos de interior. El número total de
hongos de la colonia no está relacionado con la tem-
peratura o la humedad interior.

Conclusión: El número de hongos de la colonia era
más elevado en los hogares de niños asmáticos que
en los controlados. Por lo tanto, la exposición a hon-
gos de interior puede contribuir al desarrollo del
asma infantil. Los cuartos de baño eran la fuente prin-
cipal de propagación de hongos. Las casas viejas
eran más propensas al crecimiento de los hongos.

Palabras claves: Asma. Hongos viables. Niños. Am-

INTRODUCCIÓN

Mediante varios estudios se ha sugerido que el ex-
posición por asma e inmunodeficiencia a partículas
ambientales, como fungos y polvo, puede influir en el
developimiento del asma en niños con predisposición
al asma. También se ha demostrado que la exposición
de hongos puede contribuir al desarrollo de
asma e inmunodeficiencia. Las condiciones ambientales,
como la temperatura y la humedad, pueden influir en la
deformación de hongos. En el presente estudio, se inves-
tigó la relación entre la exposición a hongos de interior
y el desarrollo del asma en niños.

MATERIAL AND METHODS

Patients

Allies study of indoor airborne fungal spores and home characteristics in asthmatic children
FROM EDIRNE REGION OF TURKEY

Introduction

Environmental factors such as indoor and outdoor
air pollution, tobacco smoke and early exposure to in-
halant allergens play roles in the development of

Skin prick tests

Skin tests were performed with Dermatophagoidees pteronyssinus and D farinae, fungi (Alternaria tenuis, Aspergillus mix, Candida albicans, Mucor racemosus, mold mix I-Alternaria tenuis, Aspergillus mix, Cladosporium, Penicillium mix, and mold mix II- Botrytis, Mucor, Rhizopus and Stemphylium), animal dander and feathers (cat, dog, sheep wool and feathers mix), and common grasses, weeds, and trees, histamine, and saline (Stallergenes, France). The reactions were recorded after 20 minutes and a wheal diameter 3 mm larger than the wheal diameter of the negative control was considered as positive reaction. All the children tested had positive control wheals 3 mm. None of the cases was under treatment that might modify skin tests, and none of the patients had received specific immunotherapy. Atopy was defined as a positive SPT to at least one of the allergens in the panel. Fungal sensitization was defined as having a positive SPT to at least one of the fungi in the panel.

Questionnaire

An interviewer-administered questionnaire was used to characterize any environmental and behavioral variables that affect the presence of indoor fungal propagules. The questionnaire was administered to the parents while the family visited the hospital for the children’s skin-prick testing. The questionnaire included structural items such as age of the house, years of occupation, number of occupants, and number of rooms in the house. The instrument also surveyed environmental controls including method of heating, presence of air conditioning, humidifiers, fans, air circulation, and sun exposure. Construction materials like insulation, flooring, and wallpaper were also noted. The presence of indoor pets, cockroach infestations, carpeting, and plants was also noted. Household vapor production was assessed by noting the presence of aquariums, weekly plant watering and floor mopping frequencies, daily cooking hours, and time spent on laundry and bathing per week. The presence of items in the child’s room that tend to gather dust was also ascertained. Residents were asked to include any observation of moisture problems, damp patches, mold or mildew growth, musty odors, and flooding or water damage within the past year. Finally, the family’s socioeconomic status was determined.

Home visits and sample collection

To verify reports of dampness or mold, all homes were visited by researchers, blinded to the children’s case-control status. The surveyors looked for evidence of (a) water damage and flooding intrusion, (b) visible mold growth in any room, (c) musty odors, and (d) visible dust. Airborne fungal spores were collected from bedrooms, living rooms, kitchens and bathrooms by exposing a petri dish with Rose-Bengal streptomycin agar. Samples were taken between 01.30 P.M and 02.30 P.M. Petri plates were put on a table 80-90 cm in height during sampling for ten minutes. The residents were asked to keep the windows and doors closed at least one hour before the measurements were taken. After sampling, the petri plates were incubated at 25 °C-27 °C for 6-7 days and the number of colony-forming units (CFU) was counted. At each sampling date, relative humidity and temperature were recorded by using a thermo hygrometer device (TFA-Dostmann GmbH, Germany) in children’s bedrooms. Three other measurements were made by the parents after training them. Home visits were made between October 2000 and February 2001 (average air temperature of 8.74 °C, relative humidity 78.26 %, with mean rainfall of 37.86 mm).

Statistics

Descriptive statistics are expressed as mean ± SD, median and range. Mann-Whitney U test was used for comparison of the continuous variables. Categorical data were tested using the chi-square statistics. Correlation between fungal colony counts and indoor relative humidity and temperature was performed with Spearman’s rho. Residential characteristics related with mold growth were assessed by logistic regression analysis (forward conditional method). All statistical analyses were performed using MINITAB release 13.32 statistical software (MINITAB Inc. US).

RESULTS

There were 47 children (22 M, 15 F; median age 8) in the asthma group and 23 children (11 M, 12 F; me-
In this study, 35 (74.47%) had mild asthma, and 12 (25.53%) had moderately severe asthma. The mean (±SD) duration of symptoms of asthmatic patients was 4.18 ± 3.08 years (median, 4; range, 0.42-14).

Twelve of atopic asthmatic children (25.53%) were sensitized to at least one of the fungal allergens (or mixture of fungal allergens) that were tested. In control children SPT's were all negative.

Fungal colony numbers in four rooms (living rooms, bedrooms, kitchens, and bathrooms) from homes of 47 asthmatic and 23 non-atopic non-asthmatic control children are described in table II. The total fungal colony counts in living rooms and bedrooms were significantly higher in asthma group than controls (p = 0.012, and p = 0.003, respectively).

All of the petri plates from homes of children with asthma exhibited fungal growth; median CFU = 2. The number of homes with total fungal colony counts less than or equal to 2 CFU (median) was 5 in asthma group, and 12 in control group. Total indoor fungal colony counts from entire homes were significantly higher in asthma group than controls (p = 0.009) (table II).

A total of 1665 fungal colonies were isolated in 210 Petri dishes. The rate of unidentified fungal colonies was 31.89%. The most common isolated genus was Cladosporium, followed by Rhizopus, Penicillium, Alternaria, and Aspergillus (table III).

To investigate the associations between indoor fungal growth and environmental and behavioral variables obtained from the questionnaires, and reported or observed signs of dampness, logistic regression (forward conditional method) was used. The total colony counts were grouped as ≤ 2 CFU and > 2 CFU (median as cut off value). Visible fungal patches in the bathrooms (OR = 5.75; 95% CI 1.19 to 27.70), and the age of the house (OR = 4.24; 95% CI 1.34 to 13.45) were associated with indoor fungal growth (table IV).

The mean indoor temperature and relative humidity was 22.29 °C and 54.07% in homes of asthmatic children.
children and 22.39 °C and 50.80 % in controls, respectively. The total CFU counts did not significantly correlate with indoor temperature or relative humidity according to Spearman’s correlation calculation (table V).

DISCUSSION

A number of studies from different countries have reported adverse effects of dampness and visible fungal growth in homes on respiratory health. Epidemiological studies that relied on questionnaires or questionnaires together with visual inspection surveys found a significant association between home dampness or indoor fungal growth, and wheeze, asthma or respiratory symptoms. The severity of asthma and mean number of symptoms was found to correlate with measures of total dampness and fungal growth.

However, other studies reported that the presence of fungal propagules in indoor air could not be reliably predicted by home characteristics obtained by questionnaires.

In the present study, we investigated the exposure to fungi in indoor environment, in order to assess the role of fungi in asthma. We found total indoor fungal colony numbers to be higher in the homes of asthmatic children than the controls. The difference was especially significant in the children’s bedrooms and living rooms, where the children spend most of their times (p = .012 and p = .003, respectively) (table II). Our results suggest that indoor fungal exposure may contribute to childhood asthma.

In few investigations fungus exposure differences between atopic and non atopic children have been addressed. Wickman et al observed that concentrations of dust-bound fungi were lower in the homes of atopic children than the controls. This observation was explained by intense house cleaning activities of the parents of atopic children.

In our study, sampling was performed with open petri dish (OPD), a method which relays on the gravitational deposition of indoor fungal propagules. Even though with this method the quantitative estimation of propagules in a given amount of air is not possible, strong correlations were found between the results obtained with N6-Andersen and the OPD.

The most common isolated genus in our study was Cladosporium, followed by Rhizopus, Penicillium, Alternaria, and Aspergillus (table III). Similar results have been reported in other studies. To minimize indoor contamination by outdoor molds we collected samples during late fall and winter season, and while the windows were closed. Our finding of Cladosporium as the most prevalent genus inside homes might be related that our homes do not have sufficient insulation which allows outdoor fungi easily enter indoors.

The skin tests to fungal allergens were found to be positive in 25.53 % of our atopic asthmatic patients. In other studies the rate of skin test sensitiv- ity to common airborne fungal allergens among asthmatic patients were reported to be 2 % to 80 %, However, many of the extracts currently available for testing are unstandardized materials, and the true prevalence of sensitivity to fungi in asthma is difficult to establish. In some of the studies no clear-cut relationship was reported between fungal sensitization and indoor fungal exposure. However, recent studies indicated that mold related effects were stronger among individuals with specific sensitization to A alternata, C herbarum, or both. Furthermore, fungi may enhance airway inflammation and cause respiratory symptoms with the production of β-glucans, mycotoxins and volatile organic compounds with a mechanism other than type I allergy.

Table IV

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>OR</th>
<th>95 % CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visible fungal patches in the bathrooms</td>
<td>5.75</td>
<td>1.19-27.70</td>
</tr>
<tr>
<td>Age of the house</td>
<td>4.24</td>
<td>1.34-13.45</td>
</tr>
</tbody>
</table>

*Total colony counts are grouped as being ≤ 2 and > 2.

Table V

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Indoor relative humidity (%)</th>
<th>Indoor temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total colony counts (CFU)</td>
<td>Spearman’s rho = 0.166 p = 0.17</td>
<td>Spearman’s rho = -0.171 p = 0.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Indoor relative humidity (%)</th>
<th>Indoor temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total colony counts (CFU)</td>
<td>Spearman’s rho = 0.166 p = 0.17</td>
<td>Spearman’s rho = -0.171 p = 0.16</td>
</tr>
</tbody>
</table>

The most common isolated genus in our study was Cladosporium, followed by Rhizopus, Penicillium, Alternaria, and Aspergillus (table III). Similar results have been reported in other studies. To minimize indoor contamination by outdoor molds we collected samples during late fall and winter season, and while the windows were closed. Our finding of Cladosporium as the most prevalent genus inside homes might be related that our homes do not have sufficient insulation which allows outdoor fungi easily enter indoors.

The skin tests to fungal allergens were found to be positive in 25.53 % of our atopic asthmatic patients. In other studies the rate of skin test sensitiv- ity to common airborne fungal allergens among asthmatic patients were reported to be 2 % to 80 %, However, many of the extracts currently available for testing are unstandardized materials, and the true prevalence of sensitivity to fungi in asthma is difficult to establish. In some of the studies no clear-cut relationship was reported between fungal sensitization and indoor fungal exposure. However, recent studies indicated that mold related effects were stronger among individuals with specific sensitization to A alternata, C herbarum, or both. Furthermore, fungi may enhance airway inflammation and cause respiratory symptoms with the production of β-glucans, mycotoxins and volatile organic compounds with a mechanism other than type I allergy.
Damp patches, mold or mildew growth, musty odors, flooding or water damage within the past year, etc. from the questionnaires were not significantly related to the measured culturable fungal propagules in indoor air, in the present study. The only questionnaire found to be predictor of indoor fungal growth was the age of the house (table IV). Older houses are more prone to water problems in combination with insufficient heating and resulting home dampness, as reported by Zock et al. in their questionnaire based survey. In other studies presence of dampness, musty odor, moldy patches, carpeted floors, household pets, limited ventilation, or infrequent vacuuming, were found to effect indoor fungal growth. Our results demonstrate that indoor levels of fungi did not correlate well with the questionnaire reports. Therefore visual inspection surveys should be needed. In our study, mold spots in the bathrooms observed by the researchers was the only factor associated significantly with indoor mold growth (table IV). This suggests that bathrooms were the main source of fungal propagules. In this investigation, the indoor viable fungal propagules did not significantly correlate with indoor temperature or relative humidity (table VI). Ambient humidity may be a poor indicator of conditions in specific indoor microenvironments, where penetrating moisture or condensation on to cold surfaces promotes the growth of moulds. On the other hand, our measurements were made in the children’s bedrooms, however our results suggest that bathrooms were the main source of the fungal propagules.

CONCLUSIONS

Fungal colony numbers were found to be higher in the homes of asthmatic children, especially in the children’s bedrooms and living rooms, where the children spend most of their time. Our results suggest that indoor fungal exposure may contribute to childhood asthma.

Indoor levels of fungi did not correlate well with the questionnaire reports. Therefore visual inspection surveys should be needed. Mold spots in the bathrooms observed by the researchers was the only factor associated significantly with indoor mold growth. This suggests that bathrooms were the main source of fungal propagules. Although, fungal allergens are thought to be less important in the etiology of asthma than house dust mites, we hypothesize that elimination of household fungi will improve asthma status.

The control of indoor molds requires a concerted approach combining fungicides, measures to reduce home dampness and the removal of mold infested items as soon as possible. Moldy items, such as a basement carpet that has suffered water damage should be removed altogether. Any measures that can be taken to reduce humidity should be recommended. Air conditioners and humidifiers have also been shown to be sources of significant mold exposure. It may be concluded that measures such as frequent application of 5 % bleach into the drainage of the basin and bath-tub, and cleaning visible mold on surfaces can reduce the mold concentration of the bathroom.

REFERENCES