1- (IR, | |) metrik uzay ile onun Z alt uzayı veriliyor.

a) (Z, | |) deki bir {xₙ} Cauchy dizisi nasıl olur? Belirtiniz?

b) (Z, | |) tam mı? Neden?

(R, | |) nin tam olgunu bilgisiz. Z de R nin kapaali bir alt kümesi olgununun (Z = ∅ Ç Z altı. Z kapaali). (Z, | |) tamdır (Tam metrik uzayın kapaali bir alt uzayı tamdır.)

(0,1,1) tamdır, Z de Cauchy dizisi olun. O zaman 3n∈N, Xₙ, Xₙ₊₁, ..., Xₙ₊ₙ, Xₙ, ..., birimindedir. Xₙ = Xₙ₊₁ olmak üzere, bu durumda 0 = 0 dir. Z = Xₙ₊ₙ olun, (0,1,1) tam

c) (Z, | |) de x = 0 olmak üzere Bᵣ(0; 1/2) ve Bᵣ[0;2] kümelerini belirtiniz ve şekline çiziniz.

Bᵣ(0; 1/2) = {x ∈ IR : |d(0,x)| = |x| < 1/2} = \((-1/2, 1/2)\) = \(-\frac{1}{2}, \frac{1}{2}\) olur, (0, 1/2) tam

Bᵣ[0;2] = {x ∈ IR : |d(0,x)| = |x| ≤ 2} = \([-2, 2]\) olur,

= \{-2, -1, 0, 1, 2\}
2- a) Bir dönüşümün topolojik eş yapısı dönüşümü olması ne demektir?
İki metrik uzayın topolojik eş yapıları uzayları olması ne demektir? Tanımlayınız.

\[(x,d) \text{ ve } (y,p) \text{ iki metrik uzay ve } f: X \rightarrow Y \text{ bir dönüşüm olun. Eğer } f, 1-1, örten, kendisi ve tersi süreklidir ise }
\[f^{-1}\text{ bir topolojik eşyapı dönüşümü denir.}
\]

Eğer \[(x,d) \text{ ve } (y,p) \text{ metrik uzayları arasında bir topolojik eşyapı dönüşümü varsa } (x,d) \text{ ve } (y,p) \text{ ya topolojik eşyapılı metrik uzayları denir.}
\]

b) \[(IR^2, d_2) \text{ uzayında } A = \{(x,y) \in IR^2 : 0 < x < 2\} \text{ ve } B = \{(x,y) \in IR^2 : 0 \leq x \leq 2\} \text{ olmak üzere } (A, d_2) \text{ ve } (B, d_2) \text{ topolojik eşyapılı olur mu? Neden?}
\]

\[f: (A, d_2) \rightarrow (B, d_2) \text{ gibi } A \text{ ile } B \text{ arasındaki bir topolojik eşyapı dönüşümünün tanımlandığını varsayalım. } 0 \text{ tana n}
\[f, 1-1, örten ve } f \text{ ve } f^{-1} \text{ süreklidir.}
\]

\[B, IR^2 \text{ de kapalı ve sınırlı olduğundan } \text{ kompakt. Kompakt kemenin süreklili bir dönüşüm altındaki gruptan } \text{ kompakttır.}
\]

\[B \text{ kompakt ve } f^{-1}(B) = A \text{ olup } A \text{ auk olduğundan } \text{kompakt olmalıdır. Dolayısıyla } f^{-1} \text{ süreklili olamaz. Bu ise } f \text{ nin topolojik eşyapı dönüşümü olması ile}
\]

\[\text{ceşitir. Su halde } A \text{ ile } B \text{ arasında bir topolojik eşyapı dönüşümünün tanımlanmaz.}
\]

c) \[(A, d_1) \text{ ve } (B, d_1) \text{ topolojik eşyapılı değildir.}
\]
3- a) Banach Sabit Nokta Teoremini ifade ediniz.

\((x, d)\) tam metrik uzay ve \(f: X \rightarrow X\) daraltan bir dönüşüm olun. (Yani her \(x, y \in X, 0 < \delta \leq 1\) olmak üzere \(f(x), f(y) \leq \delta d(x, y)\))

\(0\) zaman \(\beta\) nin bir sabit noktası vardır ve bu nokta tektir.

b) \(f: IR \rightarrow IR, f(x) = \sin\left(\frac{x}{2}\right)\) fonksiyonu veriliyor. \(IR\) deki mutlak değer metriğini göz önüne alarak \(f\) nin daraltan bir dönüşüm olduğunu gösteriniz.

\[f(\beta) = \sin\left(\frac{\beta}{2}\right)\]
\[f'(x) = \frac{1}{2} \cos\left(\frac{x}{2}\right)\]
\[|f'(x)| = \left|\frac{1}{2} \cos\left(\frac{x}{2}\right)\right| \leq \frac{1}{2}\]

Not: \(f(\beta) = \sin\left(\frac{\beta}{2}\right)\)
\[|f(\beta) - f(\beta)| = \left|\sin\left(\frac{\beta}{2}\right) - \sin\left(\frac{\beta}{2}\right)\right| \leq \frac{1}{2} \text{ (\(\beta\) değeri için)}
\]

(\(\beta\) değeri için)

\[|f(x) - f(\beta)| \leq \frac{1}{2} |x - \beta|\]
\[(c, \beta) ile \text{ arındırır}\]

\(c\)

\[|f(c) - f(\beta)| \leq \frac{1}{2} |x - \beta|\]

\[\sin\left(\frac{\beta}{2}\right) = x\]

\[\sin\left(\frac{x}{2}\right) - x = 0 \iff \sin\left(\frac{x}{2}\right) = x\]

\(f(x) = \sin\left(\frac{x}{2}\right)\) dır ve \((\beta)\) den daraltan olup \(IR\) 'de bir sabit noktası vardır ve bu nokta tektir. (\(\alpha\) den)

\[\sin\left(\frac{x}{2}\right) = x \iff \sin\left(\frac{x}{2}\right) - x = 0\]

\[x = 0\] denklemin çözümüdür.
4- Aşağıda verilen kümelerin \(IR \) de mutlak değer metriğine göre tam, kompakt ve tamamen sınırlı olup olamadıklarını araştırınız.

a) \(A = [0,1] \cap Q \) (Burada \(Q \) ile rasyonel sayılar kümesi gösterilmiştir.)

\[\overline{A} = [0,1] \text{ olup } \overline{A} \neq A \text{ olduğundan} \]
\(A \) kapalı değil olduğu için tam değil ve kompakt değil.
\(IR \)'nin sınırlı olma alt kümesinin tamamen sınırlı olduğunu bilmiyor. \(A \) sınırlı \((B_d(0;2) \supset A) \)
olduğundan \(A \) tamamen sınırlı bir kümedir.

b) \(B = \{2^n : n \in IN \} \)

\(B \) \(IR \)'nin kapalı alt kümesidir (günkü \(B = \emptyset \subset IR \)).
\(IR \) tam olduğundan \(B \) de \(\text{TAM} \) olur.
(Tam olduğu kapalı alt uzayda tamdır.)
\(B \) sınırlı olmadığından \(\text{kompakt değil} \)

\(\emptyset \) \(B \) sınırlı olmadığından \(\text{tamamen sınırlı olamaz} \)
(Tamamen sınırlı kümeler sınırlıdır)

c) \(C = \{1/2^n : n \in IN \} \)

\(C \) kapalı değil \((C = \emptyset) \subset C \)
\(IR \) tam \(C \) kapalı olmadığını tämden değiştir.
(Vezel \(\left\{ \frac{1}{2^n} \right\} \) \(C \) bir Cauchy dizesi \(\text{dikat} \frac{1}{2^n} \Rightarrow C \supset \)
\(C \) kapalı olmadığını \(\text{kompakt değil} \)
\(C \subset IR \) olup \(C \) sınırlı \((0 < \frac{1}{2^n} \leq 1 \text{ nih}) \)
olduğunun tamamen sınırlıdır.
(\(\emptyset \)'nin sınırlı olma alt kümesi tamamen sınırlıdır.)
5- a) \(\{x_n\} \) bir \((X,d) \) tam metrik uzayında bir dizi ve \(\sum_{n=1}^{\infty} d(x_n,x_{n+1}) < \infty \) olduğuna göre

\(\{x_n\} \) in \((X,d) \) de yakın olduğuunu gösteriniz.

\((X,d) \) tam olduğundan \(\forall n \in \mathbb{N}, \; (x_{2n}, x_{2n+1}) \) Cauchy dizi olduğuunu gösterelim.

\[
\lim_{n \to \infty} d(x_n,x_{n+1}) < \infty \Rightarrow a_k = \lim_{n \to \infty} d(x_k, x_{k+1}) = 0 \quad (k \to n)
\]

\[\Rightarrow \forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall k > N \; \exists n \; \forall \varepsilon > 0 \; \exists x_{k,n} \; d(x_k, x_{k+1}) < \varepsilon \text{ olur.}
\]

\[m > n \geq N \; \text{ için}
\]
\[
d(x_n, x_m) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \ldots + d(x_{m-1}, x_m)
\]
\[
= \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \leq \varepsilon
\]

Bu ise \(\{x_n\} \) in \((X,d) \) de bir Cauchy dizi olduğuunu gösterir.

\((X,d) \) tam olduğundan \(\exists \{x_n\} \ni \lim_{n \to \infty} x_n = x \text{ dir.} \)

b) \((IR^2,d_2) \) de \(\left\{(1-\frac{2}{n}, 1+\frac{1}{2n+1})\right\}_{n=1}^{\infty} \) dizisinin \((1,1) \) noktasıına yakınsadığını tanımı kullanarak gösteriniz.

\[
d_2 \left((1-\frac{2}{n}, 1+\frac{1}{2n+1}), (1,1)\right) = \sqrt{\left(1-\frac{2}{n} - 1\right)^2 + \left(1+\frac{1}{2n+1} - 1\right)^2}
\]
\[
= \sqrt{\frac{4}{n^2} + \frac{1}{4n^2 + 4n + 1}} \leq \sqrt{\frac{4}{n^2} + \frac{1}{n^2}} = \frac{\sqrt{5}}{n} \text{ olacak \&\& dan}
\]
\[\exists \varepsilon > 0 \; \text{ verildiğinde \(\exists N \geq 1 \) \; \\ni \; \frac{\sqrt{5}}{2} < N \) olanak seere}
\]
\[\text{Şekilde, her } n \geq N \; \text{ için}
\]
\[
d_2 \left((1-\frac{2}{n}, 1+\frac{1}{2n+1}), (1,1)\right) \leq \frac{\sqrt{5}}{N} \leq \frac{\sqrt{5}}{N} < \frac{\sqrt{5}}{2} = \varepsilon
\]

olur.

\[
\therefore \lim_{n \to \infty} \left(1-\frac{2}{n}, 1+\frac{1}{2n+1}\right) = (1,1) \text{ dir.}
\]
6- a) Aşağıda verilen önermelerin **doğru** ya da **yanlış** olup olmadığını belirleyiniz.

i) Bir metrik uzayda \(\{ U_i : i \in I \} \) açık kümelerin bir ailesi ise \(\bigcup_{i \in I} U_i \) açıktr. \(\text{(DOĞRU)} \)

ii) \(f : (X, d) \to (Y, \rho) \) sürekli ve \(A \subset X \) açık ise \(f(A) \), \(Y \) de açıktr. \(\text{(yanlış)} \)

iii) \(A, (X, d) \) nin tamamen sınırlı bir alt kümesi ise kopmak tür. \(\text{(yanlış)} \)

iv) Tam metrik uzaylar birinci kategoridendir. \(\text{(yanlış)} \)

v) Ayrık metrik uzaylar tam uzaylardır. \(\text{(DOĞRU)} \)

6) Aşağıdaki boşlukları doldurunuz.

i) \(f \in C[a, b] \) ise \(\| f \|_\infty = \sup_{x \in [a, b]} | f(x) | \) dir.

ii) \(f \in C[a, b] \) ise \(\| f \|_1 = \int_{a}^{b} | f(x) | dx \) dir.

iii) Bir \((IR, |.|) \) metrik uzayında \((IR \setminus \mathbb{Z})^\circ = \ldots \mathbb{R} \setminus \mathbb{Z} \ldots \ldots \) dir.

iv) Bir \((IR, |.|) \) metrik uzayında \((IR \setminus \mathbb{Z})^\sim = \ldots \mathbb{R} \ldots \ldots \ldots \) dir.

v) Bir \((IR, |.|) \) metrik uzayında \(\partial (IR \setminus \mathbb{Z}) = \ldots \mathbb{Z} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \) dir.