FONKSİYONEL ANALİZ I DERSİ ARA SINAVI
27/1/2017

Adı ve Soyadı:
İmza:
Numarası:

Not: Sadece 5 Soruyu Çözünüz. Her soru eşit puanlıdır.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Toplam</th>
</tr>
</thead>
</table>

1- \(f, g \in C[a, b] \) için \(d(f, g) = \int_{a}^{b} |f(x) - g(x)| \, dx \) metriği veriliyor.

a) \(d_x \) ile \(C[a, b] \) üzerinde bir norm tanımlanabilir mi? Neden? Eğer tanımlanabilirse bu normu bulunuz.

Norm tanımlanması için: \(\forall x, y, z \in X \text{ ve } x \neq z \text{ ise } d(x, z) > 0 \) ve \(d(x, y) = 0 \) ise \(x = y \) tanımlanmalıdır. Bu durumda \(d(\alpha x, \alpha y) = \alpha d(x, y) \) \(x \in X \) ve \(\alpha \in \mathbb{R} \) olmalıdır.

\[d(f + h, g + h) = \int_{a}^{b} |(f + h)(x) - (g + h)(x)| \, dx = \int_{a}^{b} |f(x) + h(x) - g(x) - h(x)| \, dx \]

\[= \int_{a}^{b} |f(x) - g(x)| \, dx = d(f, g) \]

b) \(f, g, h : [0,1] \to IR \), \(f(x) = 3\sqrt{x} \), \(g(x) = x^2 \), \(h(x) = 1 \) fonksiyonları veriliyor. \(C[0,1] \) de \(f \in B_{d_{\infty}}(h;1) \), \(g \in B_{d_{\infty}}(h;1) \) olur mu? Neden? \(d_{\infty}(g, B_{d_{\infty}}(h;1)) = ? \)

\[d_{\infty}(f, h) = \sup_{0 \leq x \leq 1} |f(x) - h(x)| = \sup_{0 \leq x \leq 1} |3\sqrt{x} - 1| = 2 \text{ olduğundan } +4 \text{ olur.} \]

**Her \(n \in \mathbb{N} \) için \(f_n : C[0, 1] \to IR \), \(f_n(x) = \frac{x^n}{n} \text{ for } n = 1, 2, 3, \ldots \text{ olunur.} \)

Her \(n \in \mathbb{N} \) için \(\|x^{n+1}\| = \sup_{0 \leq x \leq 1} |x^{n+1}| = n+1 \text{ olduğundan} \)

\(\lim_{n \to \infty} f_n(x) = 0 \text{ olur.} \)

\(\|x^{n+1}\| = \frac{n+1}{n} \text{ for } n = 1, 2, 3, \ldots \text{ olur.} \)
2- a) Kompakt bir metrik uzayın tam olduğuunu gösteriniz.

\((X,d)\) kompakt bir metrik uzay ve \(\{x_n\}\)de \(X\)de herhangi bir Cauchy dizişi olsun. \(X\) kompakt olduğundan \(\{x_n\}\) in \(X\)deki bir \(x\) noktasına yakın sığan bir alt dizişi vardır.
\(\{x_n\}\) Cauchy dizişi olduğundan, \(\{x_n\}\) de alt diziinin yakın sıra x noktasına yakın. Bunu her \(\{x_n\}\) Cauchy dizişi için yapabileceğimizden \(X\) tam olur.

b) \((\mathbb{R}^2,d_2)\) metrik uzayında \(A = \left\{ \left(1, \frac{1}{n}\right) : n = 1, 2, 3, \ldots \right\} \subset \mathbb{R}^2\) kümesinin her açık örtüsünün sonlu bir alt örtüsü olup olmadığını olup olamayacağını araştırınız.

Bir kümenin her açık örtüsünün sonlu bir alt örtüsü varsa, o kümenin kompakt olduğunu dikkat etmek, Ayrıca kompaktlik ile sınırlılık kompaktlik (kürenin alınan her diziinin \(\mathbb{R}\)inde yakın bir alt dizişi vardır.) denk kavramlardır.

Bunca göre \(\left(0, \frac{1}{n}\right)\)? \(A\) da bir dizi olup bunun batını alt dizileri \((0,0)\)'da yarık yapar. Fakat \((0,0)\in A\) olduğundan \(\left(0, \frac{1}{n}\right)\)'nin \(A\) içinde yakın bir alt dizişi olmadığı \(A\) kompakt değildir.

\(A\) in her açık örtüsünün sonlu bir alt örtüsü bulunamaz.

c) \(\mathbb{R}\) deki mutlak değer metriğine göre \(B = \left\{ \frac{1}{n} : n = 1, 2, 3, \ldots \right\}\) kümesinin tamamen sınırlı olup olmadığını tanımlı kullanan graf gösteriniz. \(B\) kompakt bir küme mi? Neden?

\[\frac{1}{n} \to 0 \quad (n \to \infty) \text{ olduğundan; } \forall \varepsilon > 0 \text{ için } \exists N \in \mathbb{N} \quad \forall n \geq N \\
\frac{1}{n} < \varepsilon \quad \text{ olur.} \text{ Yani } \forall n \geq N \text{ için } \frac{1}{n} \in B \quad (0,\varepsilon) \text{ dur.}
\]

Böylece \(B = \{1/2, 1/3, 1/4, \ldots\} \subset B\) olursa bu halde \(\left\{0, \frac{1}{2}, \ldots, \frac{1}{N}, \ldots\right\}\) kümesi \(B\) in bir sonlu \(\varepsilon\)-apolar olur.

\[B, \text{ tamamen sınırlıdır.} \]

\(B\) kapalı olmadığından kompakt değildir. (Kompakt küme)

(sonla \(1/2 < B \text{ ve } 1/0 \text{ tahat } 0 \notin B\)).
3- \((X,d)\) kompakt bir metrik uzay ve \(f: X \to X\), her \((x \neq y)\) \(x,y \in X\) için \(d(f(x),f(y)) < d(x,y)\) koşuluunu sağlayan bir fonksiyon olsun.

\(\phi: X \to IR, \phi(x) = d(f(x),x)\) biçiminde tanımlandığuna göre

a) \(\phi\) nin düzgün sürekli olduğunu gösteriniz?

Öncelikle her \(x,y,u,v \in X\) için \(|d(x,u) - d(y,v)| \leq d(x,y) + d(u,v)\) olduğunu biliriz.

Her \(x\) üzerinde \(\varepsilon > 0\) var olduğuna göre, \(d(x,y) < \frac{\varepsilon}{2}\) tanımlayarak \(\varepsilon\) için

\[|\phi(x) - \phi(y)| = |d(f(x),x) - d(f(y),y)| \leq d(f(x),f(y)) + d(x,y) \leq d(x,y) < 2 \cdot \frac{\varepsilon}{2} = \varepsilon\]

dönün.

\(\therefore \phi\) sürekli X üzerinde düzgün süreklidir.

b) \(f\) nin bir sabit noktasının var ve tek olduğunu gösteriniz?

\(\psi\), sürekli ve \(X\) kompakt olduğundan \(\exists x_0 \in X\) \(\psi(x_0) = \inf \{\psi(x) = d(f(x),x) : x \in X\}\) dir.

\(\varepsilon\) per \(x_0 = f(x_0)\) olmak \(\varepsilon\) \(x_0 \in X\) olduğundan \(\psi(f(x_0)) = d(f(f(x_0)), f(x_0)) \leq d(f(x_0), x_0) = \psi(x_0)\)

olurduku bu da \(\bullet\) ile cellişirdi.

Su halde \(x_0 = f(x_0)\) olup \(x_0\) \(f\) nin bir sabit noktasıdır.

\(f\) nin başka bir sabit noktası \(x\) olun. \(\varepsilon\) zaman \(d(x_0,x) = d(f(x_0),f(x)) \leq d(x_0,x)\) olurdu, cellişti.

Su halde \(f\) nin sabit noktası tekktir.
4-a) X sonlu tane elemana sahip bir küme ve d de X üzerinde bir metrik olsun. O zaman d metriğinin X üzerinde tanımlı dₐ ayrık metriği ile denk olduğuunu gösteriniz.

X sonlu tane elemana sahip olduğundan
\[d(x,y): x,y \in X, x \neq y \] kumesi sonlu olup bu nedenle mak. ve min. değerleri vardır.

\[a = \min \{ d(x,y) : x,y \in X, x \neq y \}, \quad b = \max \{ d(x,y) : x,y \in X, x \neq y \} \]
digelim. O zaman a,b>0 (Künk \(\forall x \in X \) \(d(x,x) = 0 \))

Bu nedenle \(x \neq y \) için \(d \leq d(x,y) \leq b \) olur. \(d_a(x,y) = \frac{1}{2} \) \(x \neq y \) old.\(\Rightarrow y \neq y \) \(\forall x \in X \) \(d_a(x,y) \leq \frac{1}{2} d(x,y) \leq b \) olur,

Bu da \(x \neq y \) \(\Rightarrow \) Lipschitz denk olduğuunu olayıysıyor denk.

b) Her hangi bir \((X,d_a)\) ayrık metrik uzayının tam olduğunu gösteriniz.

\[
\text{Bü demekde } x, y \in X \text{ olayıktır.}
\]

\[
\text{Bu halde } I \text{ ve } I^{-1} \text{ sûrelili old. \(x \neq y \) ve ayrık denkterler.}
\]

Bu da \(x, y \in X \) \(\Rightarrow \) Cauchy dizisi olun. O zaman \(\exists x \in X \), bir sabit dırın yada
\(\exists n \in \mathbb{N} \) \(\forall n \in \mathbb{N} \) \(x = x \) \(\text{dir.}
\)

Gerektendi: \(\varepsilon = \frac{1}{2} \) \(\forall n \) \(\text{Cauchy oldugundan } \exists n \in \mathbb{N} \) \(\forall n \geq n \) \(\frac{1}{2} \) \(\text{oldu. Bu da } \text{11 cualmarın andak } \forall n \in \mathbb{N} \) \(\forall n \geq n \) \(\text{oldur.}
\)

Bu halde \(x = n \) \(\forall n \in \mathbb{N} \) \(x = x \) \(\text{birlimindedir.}
\)

\(\exists n \in \mathbb{N} \text{ ve } \forall n \geq n \text{ olayıktır.}
\)

\[
\text{Bu demekde } x = x \text{ olayıktır.}
\]

Bu halde \(x = x \text{ old. den } x = x \text{ ve ayık denkler.}
\]

c) Ayrik metrik uzaylar kaçınıci kategoridendir? Neden?

Bakın Koşul) Tereminden tam metrik uzayların ikinci koşul parımlı olduğunu biliyoruz.

\((X,d_a)\) tam oldugundan ikinci koşul parımlıdır.
5. \((X, d)\) ve \((Y, \rho)\) metrik uzayları, \(f, g : X \rightarrow Y\) süreklü iki fonksiyon olsunlar.

a) \(D = \{x \in X : f(x) = g(x)\}\) kümesinin \(X\) in Kapalı bir alt kümesi olduğunu gösteriniz.

\(f\) ve \(g\) süreklı olduğundan diessel süreklidirler. Yani her \(x_0\) için \(X\), \(y = f(x_0) = g(x_0)\) ve \(\rho(y, z) = \rho(f(x_0), g(x_0))\).

\(D\) nin kapalı olduğu için \(y = f(x_0)\) ve \(g(x_0)\) old.

b) \(D = \{x \in X : f(x) = g(x)\}\) kümesi \(X\) in yoğun bir alt kümesi ise \(f = g\) olduğuunu gösteriniz.

\(\text{a) \text{ Sikkiden Dının kapalı olduğuunu bilgiyoruz. O halde, } D = D\text{ dir. D} \in X\text{ in yoğun alt kümesi ise, x = D = D olur. Bu halde her } x \in X\text{ için } f(x) = g(x)\text{ olacakdır.} \) \(\therefore f = g\text{ dir.}\)
6- a) Aşağıda verilen önermelerin **doğru** ya da **yanlış** olup olmadığını belirleyiniz.

i) Bir dizi Cauchy dizisi değilse yakınsakta değildir. (**DOĞRU**)

ii) $f : (X, d) \to (Y, \rho)$ sürekli ve $A \subseteq X$ kapalı ise $f(A)$, Y de kapalıdır. (**YANLIŞ**)

iii) $A, (X, d)$ nin sınırlı bir alt kümesi ise tamamen sınırlıdır. (**YANLIŞ**)

iv) Kompakt kümelerin her hangi bir birleşimi de korektür. (**YANLIŞ**)

v) Denk iki metrikten birine göre yakınsak olan dizi diğerine göre de yakınsaktır. (**DOĞRU**)

6) Aşağıdaki boşlukları doldurunuz.

(i ve ii. şıkları için) $x_n = \left\{ \frac{1}{5^n}, \frac{1}{5^{n+1}}, \ldots \right\}$ ise

i) $\|x_n\|_{\infty} = \ldots \frac{1}{4} \ldots \ldots \ldots \ldots \ldots$ dir. ($\|x_n\|_{\infty} = \sup\{ |x_n| : n \in \mathbb{N} \}$)

ii) $\|x_n\|_{l_1} = \ldots \frac{5}{4} \ldots \ldots \ldots \ldots$ dir. ($\|x_n\|_{l_1} = \sum_{n=0}^{\infty} |x_n|$)

iii) Bir (X, d_o) ayrık metrik uzayında $A, B \subseteq X, A \cap B = \emptyset$ için

$\quad d_o(A, B) = \ldots \frac{1}{4} \ldots \ldots \ldots \ldots$ dir.

iv) $(IR, |.|)$ de $A = \left\{ \frac{1}{n} : n = 1, 2, 3, \ldots \right\}$ kümesi için $\delta A = \ldots \emptyset \ldots \ldots \ldots \ldots$ dir.

v) $(IR, |.|)$ de $A = \left\{ \frac{1}{n} : n = 1, 2, 3, \ldots \right\}$ kümesi için $\delta(A) = \ldots \bigcup_{n=0}^{\infty} \frac{1}{n} \ldots \ldots \ldots \ldots$ dir.