Maxwell Denklemleri:

1. \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \)
2. \(\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \frac{\varepsilon_0 \mu_0}{c^2} \mathbf{J} \)
3. \(\nabla \cdot \mathbf{D} = \rho \)
4. \(\nabla \cdot \mathbf{B} = 0 \)

Kaynaklar:

1. \(E \): Elektrik alan \(\text{V/m} \)
2. \(H \): manyetik alan \(\text{A/m} \)
3. \(D \): elektrik alımy殒芦nluğu \(\text{Coul./m}^2 \)
4. \(B \): manyetik \(\text{T} \)
5. \(\mathbf{M} \): (SANAL) manyetik alımy殒芦nluğu \(\text{V/m} \)
6. \(\mathbf{J} \): elektrik alımy殒芦nüğü \(\text{A/m}^2 \)
7. \(s \): elektrik yük yoğunluğu \(\text{Coul./m}^2 \)
\[
E(x, y, z, t) = Re \{ E(x, y, z, t), e^{j\omega t} \}
\]
olarak yaratılır. Bu notasyon \(E(x, y, z, t)\) \(E(x, y, z, t)\) 'in faktör göstergisi olarak adlandırılır. Faktör bu allanın, aynı bileşen, \(\omega \) sabit bir sayı ile çarpımına indirgenmiştir, matematiksel işlemler olmak üzere uygulanmıştır. Yani \(\frac{\partial}{\partial t} = j\omega\) lehine gelir ve faktör formu Maxwell'e denkliktedir:

\[
\begin{align*}
\nabla \times E &= -j\omega B - \mathbf{m} \\
\nabla \times H &= j\omega D + \mathbf{J} \\
\n\nabla \cdot B &= 0 \\
\n\nabla \cdot D &= 0
\end{align*}
\]

Malieme ortamında alanlar:

*Genel olarak bir malieme ortamında, belirli bir farklı olarak değişik \(E_0\) ve \(\mu\) değerleri sabitlerin bulunabilir. Bu farklı sabitler:

\[
E = E_0, E_0 = (E_{rr} - jE_{r}) \quad 0
\]

\[
\mu = \mu_0, \mu_0 = (\mu_{rr} - j\mu_{r}) \quad 0
\]

E ve \(\mu\) sınırları ile elektrikli ve manyetik hat dayanıkları: Reel kısmları maliemenin elektrikli ve manyetik alanlar arasındaki bir lodo yarım yayın ve imaginier kısmının bir lodo kayipli yayın gösterir.

Eğer bu lodoysun, malieme içinde farklı yönlerde farklı değerler alıyor ise bu bir malieme yön koordinat malieme herimiz bu lodo tür (matriks ile gösterilebilir.) örnek:

\[
\begin{bmatrix}
E_x \\
E_y \\
E_z \\
\end{bmatrix}
= \begin{bmatrix}
E_{xx} & E_{xy} & E_{xz} \\
E_{yx} & E_{yy} & E_{yz} \\
E_{zx} & E_{zy} & E_{zz} \\
\end{bmatrix}
\begin{bmatrix}
E_x \\
E_y \\
E_z \\
\end{bmatrix}
\]
İçerel matematik Araştırının Alanlar ve Sınıf Belgeleri:

\[B_{2n} = B_{1n} \quad \text{ya da} \quad n \cdot B_2 = n \cdot B_1 \]
\[H_{t2} = H_{t1} = J_s \quad \text{ya da} \quad \hat{n} \times (\hat{H}_2 - \hat{H}_1) = \hat{J}_s \]
\[D_{2n} = D_{1n} = 0 \quad \text{ya da} \quad \hat{n} \cdot (\hat{B}_2 - \hat{B}_1) = \hat{P} \]
\[E_{k1} - E_{k2} = -M_s \quad \text{yada} \quad (\hat{E}_2 - \hat{E}_1) \times \hat{n} = \hat{M}_s \]

*Dielektrik Araştırının Alanlar:

Kayıplı dielektrik içi matematik araştırında yüzey yük ve akım yoktur.

\[D_{1n} = D_{2n} \quad \Rightarrow \quad E_1 = E_2 = E_{2n} \]
\[B_{1n} = B_{2n} \quad \Rightarrow \quad H_1 = H_2 = H_{2n} \]
\[E_{k1} = E_{k2} \]
\[H_{k1} = H_{k2} \quad \text{olarak elde edilir.} \]

*Mürekkep iletim Arayışında Alanlar:

 Eğer ortam 2 mürekkep bir iletim bölgü matematik istendi E değerinin imaginer kısmının sonuca yelpazes. \(E = E_r + jE_i \). Bunun sonucu olarak bu tür matematiksel olamalar etkileyenin, sadece yöneye ilâh.
Notun olarak:

\[\vec{E} \quad \text{ve} \quad \vec{B} \quad \text{olarak bulunan.} \]

* Dalga Denklemi ve Boğıt dalga denklem çözümü:

Faktör kullanarak Maxwell denkleminin dördüncü formül; hayalardan bir ortama:

\[\nabla \times \vec{E} = -j\omega \vec{H} \quad (1) \]
\[\nabla \times \vec{H} = j\omega \vec{E} \quad (2) \]

Bu ortamda hali halinde bir E-M dalga var, bu hali ortam içinde nasıl ilerleyeceği belirlemek.

(1) \(\nabla \times \) operatörü uygulayalım:

\[\nabla \nabla \times \vec{E} = -j\omega \nabla \times \vec{H} = \omega^2 \vec{\mu} \cdot \vec{E} \]

\[\Rightarrow \nabla \nabla \times \vec{E} = \omega^2 \vec{\mu} \cdot \vec{E} \quad \text{esitiği elde edilir.} \]

\[\nabla \nabla \times \vec{A} = \nabla (\nabla \times \vec{A}) - \nabla^2 \vec{A} \quad \text{esitiğini kullanarak:} \]
\[\nabla (\nabla \times \vec{E}) - \nabla^2 \vec{E} = \omega^2 \vec{\mu} \cdot \vec{E} \quad \text{esitiği elde edilir. Aynı zamanda } \nabla \vec{E} = 0 \]

\[\Rightarrow \nabla^2 \vec{E} + \omega^2 \vec{\mu} \cdot \vec{E} = 0 \quad \text{denklemi elde edilir. Aynı şekilde} \]
\[\Rightarrow \nabla^2 \vec{H} + \omega^2 \vec{\mu} \cdot \vec{H} = 0 \quad \text{bulunur. Bu denkleme Helmholtz denklemi denir.} \]
\[\text{Helmholtz denklemi dalga denklemi, faza formulu} \]

Bu noterde \(k^2 = \omega^2 \vec{\mu} \) dalga sabiti olarak tanımlanır.

yarılmak, belirlen.
Dürtünel dalgalar: Doğada bununlaştıkları değişken bir yüzey altında (solunumunun), matematiksel olarak, em dalga analitik olmakla birlikte dört aşırlık. Bu noktada E vektörünün saidece x-komponentine bağlı olduğu ve x ve y yönlerinde değişmeliği frek edebilir yani

$$\frac{\partial E}{\partial x} + i\frac{\partial E}{\partial y} = 0$$

Bu durumda Helmholtz denklemi

$$\frac{d^2 E}{dz^2} + k^2 E = 0$$

holini alır. Dif. denk analitik bir dalga denklemin karakteristik denklemin.

$r^2 + k^2 = 0$ olarak bulunur doalamışla $\gamma = \pm jk$

$E(x,t) = E^+ e^{-jkt} + E^- e^{jkt}$ olarak bulunur. Burada E^+ ve E^- sıfat sahdır.

Tamara bağlılığı analitik olmamı, iştir:

$$E_x(z,t) = \text{Re} \left\{ E(x,t), e^{j\omega t} \right\} = E^+ \cos(\omega t - k\gamma) + E^- \cos(\omega t + k\gamma)$$
orolar bu bulunur.

E^+ yön giden dalga dir, E^- yön giden dalga.
Bu dalgaın hiti

t = 1 arıncı, t ve kadar artar?

\(wt - kt = \text{sažit i}c \)

\[z = \frac{\omega}{k} \]

kaçar artırılır, dalgasıyla \(\frac{z}{t} = \frac{\omega}{k} = v_p = \frac{1}{\sqrt{\nu \mu}} \) olarak bulunur.

\(v_p = \sqrt{\frac{1}{\nu \mu}} = 2.998 \times 10^8 \) m/s (em dalgaın havada hiti) olarak ele alınır.

Bu dalgaın dalgın boyu da:

\[\cos(\omega t - kx) \]

içinde iki molar mütölf arasındadır, mesafethin

yani \((\omega t - kx) - (\omega t - k(x + \lambda)) = 2\pi \) olmalıdır.

\[\Rightarrow \lambda = \frac{2\pi}{k} \] olmalıdır.

\[k = \omega \sqrt{\mu \varepsilon} = \frac{\omega}{v_p} = \frac{2\pi f}{v_p} \]

\[= \frac{v_p}{f} \] olarak bulunur.

Bu ödül dalgın meryeklik hını:

\[H_y = \frac{j}{\omega \mu} \frac{\partial E_x}{\partial z} = \frac{1}{\eta} \left(E^+ e^{-jkt} - E^- e^{jkt} \right) \]

olarak bulunur.

Burada \(\eta = \frac{\omega \mu}{k} \)

özellik not: Burada \(E_x, H_y \) dalgın ilerleme yönü ya da \(\hat{j} \) yönü yönü kadın.